Consequences of α-Bromo Substitution on the Course of Allylmetal Additions to 1-Oxaspiro[4.5]dec-7-en-6-one

Horst Jan Klemeyer and Leo A. Paquette*

Evans Chemical Laboratories, The Ohio State University,

 Columbus, Ohio 43210
Received July 19, 1994

Although reactions involving the addition of organometallics to ketones play a key role in modern synthesis, the consequences of structural effects on stereoselectivity and regioselectivity continue to elicit considerable attention. We have recently reported a three-step capping sequence by which carbonyl groups can be readily transformed into spirocyclic tetrahydrofuranyl building blocks. ${ }^{1}$ The first step, consisting for example in the addition of allylmagnesium bromide to 1 , proceeded to give alcohols 2 and 3 in a 5:1 ratio.

Extensions of this investigation have required that we subject the α, β-unsaturated analog of 1 , viz. 4, as well as the corresponding α-bromo enone 5 to the same capping protocol. Although a great deal of information is available concerning the reaction of conjugated enones with organolithium and Grignard reagents, studies relating to α-bromo enones are rare indeed. In actuality, the few available reports detail chemistry involving cuprates as co-reagents. ${ }^{2}$ In this paper, we detail how 4 and 5 differ in their role as electrophilic acceptors of allyllithium and allylmagnesium bromide.

4

5

Results

Introduction of the double bond into 1 was accomplished by conversion to the α-bromo ketone with pyridine hydrobromide perbromide ${ }^{3}$ and dehydrobromination with lithium carbonate and lithium bromide in hot dimethylacetamide. ${ }^{4}$ Bromination of 4 in the presence of triethylamine ${ }^{5}$ furnished 5.

[^0]The addition of allyllithium ${ }^{6}$ to 4 in cold THF solution proved to be chemoselective in that only the 1,2 -addition products 6 and 7 were formed. However, the 1:1 distribution of these alcohols revealed a lack of stereoselectivity. The stereochemical assignments to 6 and 7 are based

on the internal hydrogen bonding ${ }^{7}$ present in 7 as evidenced by the sharp, concentration-independent hydroxyl absorption exhibited by this alcohol in its ${ }^{1} \mathrm{H}$ NMR spectra. The three-dimensional arrangement uniquely capable of accommodating this feature is A. Under essentially identical circumstances, the hydroxyl proton of 6 is not observed.

When 4 was treated with ethereal allylmagnesium bromide ${ }^{8}$ at $-78^{\circ} \mathrm{C}$, two differing features of this process were made immediately obvious. The significant new products were now the ketones $8(38 \%)$ and 9 (8%), which unlike 6 (14%) and 7 (16%) were formed with a kinetic bias in favor of addition cis to the ethereal oxygen atom. For stereoelectronic ${ }^{9}$ and steric reasons, the conformation of 8 is expected to be that depicted as \mathbf{B}. Examination

A

B
of this ketone by $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy revealed the appearance of H_{a} as a multiplet centered at $\delta 2.59$, the principal coupling partners to which were $\mathrm{H}_{\mathrm{b}}\left(J_{\mathrm{a}, \mathrm{b}}=\right.$ $11.5 \mathrm{~Hz})$ and $\mathrm{H}_{\mathrm{c}}\left(J_{\mathrm{a}, \mathrm{c}}=11.5 \mathrm{~Hz}\right)$.

The bromo enone 5 proved to be a more extraordinary electrophile toward allylation. No 1,2 -addition was observed with either organometallic. When 5 was admixed with allyllithium as before, the four possible diastereomeric 1,4 -adducts $10-13$ were isolated as pure entities in a combined yield of 74%. Since the stereogenicity of the bromine-substituted carbon originates during protonation of the intermediate enolate, a more relevant feature of these products is the stereochemical disposition of their allyl group relative to the spirocyclic ether

[^1]

5

THF, $\mathrm{Et}_{2} \mathrm{O}$
$78^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$

12

13
oxygen. In this connection, it is noteworthy that the combined total of 12 (36\%) and $\mathbf{1 3}$ (12\%) is approximately double that realized for 10 (9\%) and 11 (17\%). This distribution is not in keeping with the observations made earlier for allylmagnesium bromide capture by 4.
The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 0 - 1 3}$ are sufficiently distinctive below $\delta 3.0$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution to permit unequivocal assignment to their individual chair conformations. In the final analysis, structural elucidation was based on the chemical shift of H_{a} (the proton vicinal to Br), the magnitude of its coupling to H_{β}, and the presence or absence of diagnostic NOE interactions. Key stereochemical information was also derived from the realization that the dual axial projection of H_{α} and the spirocyclic ether oxygen gives rise to a downfield shift of $0.7-$ 0.9 ppm as a direct consequence of anisotropic deshielding.

In line with these considerations, 10 was identified as adopting conformation \mathbf{C} on the basis of the lack of an anisotropic field effect of $\mathrm{H}_{\alpha}(\delta 4.32)$, the magnitude of $J_{\alpha, \beta}(4.3 \mathrm{~Hz})$, and the absence of an NOE interaction with H_{γ}. For comparison, H_{α} in 11 appears at $\delta 5.05$, exhibits

C

E

D

F
strong diaxial coupling ($J=12 \mathrm{~Hz}$) to H_{β}, and produces a respectable 3% NOE effect at H_{γ}. These data require orientation of the relevant protons as shown in \mathbf{D}. The dispositions of the key protons in 12 were defined to be as in \mathbf{E} on the strength of the appearance of H_{α} at $\delta 4.12$, strong diaxial coupling ($J=12 \mathrm{~Hz}$) to H_{β}, and NOE interactions with both $\mathrm{H}_{y}(2 \%)$ and $\mathrm{H}_{\delta}(3.4 \%)$. For 13, the results were: H_{α} at $\delta 5.05$ and $J_{\alpha, \beta}=4.5 \mathrm{~Hz}$.

In further confirmation of these geometries, reliance was placed on the fact that equatorial α-alkoxy ketones are more polar than their axial counterparts. ${ }^{9}$ For example, $14\left(\mathrm{X}=\mathrm{OCH}_{3}\right)$ exhibits an R_{f} of 0.13 in 4:1 hexanes-ether while the R_{f} for $15\left(\mathrm{X}=\mathrm{OCH}_{3}\right)$ is $0.39 .{ }^{10}$ For the subset, 10-13, the polarity ordering in ether-

[^2]

14
petroleum ether (3:1) was determined to be $0.50,0.75$, 0.25 , and 0.63 , respectively. The most polar diastereomer 12 has both neighboring hetero atoms projected equatorially as in \mathbf{E}. The finding that $\mathbf{1 0}$ is the third least polar member of this series is in agreement with the axial nature of its spirocyclic oxygen atom.

Finally, the ${ }^{13} \mathrm{C}$ NMR shifts of the bromine-substituted carbons in 10-13 correlate very well with those exhibited by model compounds for which the axial and equatorial orientations of the α-bromine atom have been unambiguously defined. ${ }^{11}$ A particularly diagnostic example is that reported for $14(\mathrm{X}=\mathrm{Br})$ and $15(\mathrm{X}=\mathrm{Br})$ where the equatorial substituent (56.4 ppm) is seen to exert a downfield shift relative to that resident in the axial epimer (51.8 ppm). ${ }^{12}$ This general trend is manifested as well by $\mathbf{D}(61.6 \mathrm{ppm}), \mathbf{E}(60.9 \mathrm{ppm})$, and $\mathbf{F}(58.3 \mathrm{ppm})$ when these data are compared with \mathbf{C} (57.0 ppm).

When 5 was treated with allylmagnesium bromide, only $10(35 \%), 11(18 \%)$, and $12(21 \%)$ were produced. No evidence was obtained for the possible coformation of $13 .{ }^{13}$ This product distribution reveals a predominance of attack from that surface of the bromo eione π-bond syn to that occupied by the ether oxygen. A parallel therefore exists in the stereoselectivity responses of 4 and 5 to 1,4 -addition by the allyl Grignard reagent.

Although the present investigation is the first to address explicitly the contrasting behavior of α^{\prime}-alkoxy cyclic enones substituted by both H and Br at C_{α}, conjugate additions to the related compounds 16-19 have been reported earlier. ${ }^{14,15}$ Lithium dimethylcuprate

16

18

17

19
adds 1,4 to these substrates in THF at $-78^{\circ} \mathrm{C}$ to rt to give predominantly cis product in the case of 16 (92%) and 19 (78%), and trans adducts in the other two examples (98% and 97%, respectively). When trimethylsilyl chloride (TMSCl) is present as a co-reactant, the corresponding cis/trans ratios are reversed for 16 (<1 : $99)$ and 19 (1:4.8), but not for 17 (1:34) or 18 (1:5.5). The TMSCl is believed to suppress equilibration in advance

[^3]of C-C bond formation, the accompanying rate acceleration being influenced more by stereoelectronic than by steric factors. ${ }^{14}$
As in 16-19, the lone pair of electrons associated with the spirocyclic ether oxygen in 4 and 5 is available for chelation to a lithium or magnesium center. Attack from the syn face would be expected ${ }^{16}$ as a consequence of intramolecular delivery. Indeed, this stereochemical course is the more dominant for the allyl Grignard additions. The structural features of allyllithium ${ }^{17}$ appear equally conducive to precoordination to the same heteroatom. The experimental data for 5 do not agree with this conclusion. The possibility exists that electrostatic repulsion, ${ }^{18}$ stereoelectronic contributions, ${ }^{19,20}$ and steric effects singly or in combination override the reversible complexation phenomenon.

Whatever the actual situation, our findings indicate that further investigation of the regio- and diastereoselectivity aspects of α-bromo enone reactions with various types of organometallics is warranted.

Experimental Section ${ }^{21}$

1-Oxaspiro[4.5]dec-7-en-6-one (4). A cold ($0^{\circ} \mathrm{C}$), magnetically stirred solution of $1(4.38 \mathrm{~g}, 28.4 \mathrm{mmol})$ in dry THF (50 mL) was treated with pyridine hydrobromide tribromide (11.00 $\mathrm{g}, 34.4 \mathrm{mmol}$), stirred at rt for 1 h , poured into a separatory funnel, treated with saturated sodium thiosulfate solution (50 mL), and extracted with ethyl acetate ($5 \times$). The combined organic phases were washed twice with brine, dried, and evaporated. Chromatography of the residue (8.72 g) on silica gel afforded $2.84 \mathrm{~g}(43 \%)$ of the sensitive α-bromo ketone which was directly added to a slurry of lithium bromide ($2.70 \mathrm{~g}, 30.5$ mmol) and lithium carbonate ($2.80 \mathrm{~g}, \mathrm{~m} 36.6 \mathrm{mmol}$) in dimethylacetamide (20 mL) and heated to $170^{\circ} \mathrm{C}$ for 2 h . After being cooled to rt, the mixture was directly applied to a column of silica gel. Elution with 1:1 ether-petroleum ether gave $480 \mathrm{mg}(26 \%)$ of 4 as a colorless oil; IR (film, cm^{-1}) 1683, 1430, 1388, 1222, 1088,803 ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.87$ (ddd, $J=10,1,1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 2.53$ (dddd, J $=14,6,4,1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (dddd, $J=14,6,4,1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.211.62 (series of m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 199.0, $149.6,128.0,84.0,69.0,34.4,32.1,25.5,24.9 ; \mathrm{MS} m / z\left(\mathrm{M}^{+}\right) \mathrm{calcd}$ 152.0837 , obsd 152.0835.

7-Bromo-1-oxaspiro[4.5]dec-7-en-6-one (5). A 304 mg (2.0 $\mathrm{mmol})$ sample of 4 was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and treated dropwise with a 10% solution of bromine in $\mathrm{CCl}_{4}(1.1 \mathrm{~mL}, 2.1 \mathrm{mmol})$. The reaction mixture was allowed to warm to rt during 1 h , treated with triethylamine ($0.3 \mathrm{~mL}, 4.0$ mmol , and stirred for an additional hour before being poured into 15% sodium thiosulfate solution and extracted with ethyl acetate $(5 \times$). The combined organic layers were dried and evaporated to afford 410 mg (90%) of 5 as a clear oil; IR (neat, cm^{-1}) $1695,1603,1420,1322,1098,1016$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{dd}, J=4.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 2.63$ (dddd, $J=19,10,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (dddd, $J=19,10,4.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21-1.63 (series of m, 6 H); ${ }^{13} \mathrm{C}$ NMR (75 MHz ,

[^4]CDCl_{3}) ppm 191.0, 150.2, 121.8, 84.7, 69.2, 34.3, 32.5, 26.3, 25.6; $\mathrm{MS} m / z\left(\mathrm{M}^{+}\right)$calcd 229.9942 , obsd 229.9903 .

Reaction of 4 with Allyllithium. A solution of allyltri-nbutyltin ($0.31 \mathrm{~mL}, 1.0 \mathrm{mmol}$) in dry THF (2 mL) was treated dropwise via syringe with a solution of n-butyllithium in hexanes (0.6 mL of $1.6 \mathrm{M}, 0.96 \mathrm{mmol}$) and stirred for 45 min . Ketone 4 ($29 \mathrm{mg}, 0.19 \mathrm{mmol}$) dissolved in anhydrous ether (2 mL) was added to the cold $\left(-78^{\circ} \mathrm{C}\right)$ allyllithium solution, stirred at this temperature for 1 h , allowed to warm to rt , and poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was twice extracted with ethyl acetate and the combined extracts were dried and concentrated. Chromatography of the residue on silica gel (elution with 25% ether in petroleum ether) afforded $10.3 \mathrm{mg}(28 \%)$ of 6 and $10.3 \mathrm{mg}(\mathbf{2 8 \%}$) of 7.

For 6: colorless oil; IR (neat, cm^{-1}) 1458,1058 ; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.00(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=12 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~m}, 2 \mathrm{H}), 2.35-1.30$ (series of $\mathrm{m}, 10 \mathrm{H}$) (OH not observed); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 134.3, 131.7, 128.4, 118.7, 85.9, 73.7, 68.4, 41.5, 31.7, 30.6, 26.3,23.8; MS m / z (M^{+}) caled 194.1307, obsd 194.1311.

For 7: colorless oil; IR (neat, cm^{-1}) 1052, 911; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.00(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=11 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.30-1.30$ (series of $\mathrm{m}, 10 \mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) ppm 134.3, 132.6, 127.6, 117.2, 85.9, 72.8, 68.2,43.1, 30.6, 29.7, 25.5, 22.4; MS m / z (M^{+}) calcd 194.1307, obsd 194.1297.

Reaction of 4 with Allylmagnesium Bromide. A magnetically stirred solution of $4(29 \mathrm{mg}, 0.19 \mathrm{mmol})$ in anhydrous ether (2 mL) was cooled to $-78^{\circ} \mathrm{C}$ and treated dropwise with a solution of allylmagnesium bromide in ether $(1.0 \mathrm{~mL}$ of 0.5 M , 0.50 mmol). After 1 h , the reaction mixture was allowed to warm to rt , poured into 1 M NaHCO 3 solution, and extracted with ethyl acetate $(2 x)$. The combined organic phases were dried and concentrated prior to chromatography of the products on silica gel. Gradient elution with $20-50 \%$ ether in petroleum ether furnished $14.0 \mathrm{mg}(38 \%)$ of $8,3.3 \mathrm{mg}(9 \%)$ of $9,5.2 \mathrm{mg}(14 \%)$ of 6 , and 6.3 mg (17%) of 7.

For 8: colorless oil; IR (neat, cm^{-1}) 1719, 1458, 1438, 1128, $1036,994,914 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75(\mathrm{~m}, 1 \mathrm{H}), 5.00$ (m, 2 H), $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1$ $\mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{ABm}, 2 \mathrm{H}), 2.1-0.8$ (series of $\mathrm{m}, 8 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 210.1, 135.8, 116.7, 86.5, 68.1, 44.4, 40.8, 39.4, 37.5, 30.3, 27.9, 25.7; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 194.1307, obsd 194.1304.

For 9: colorless oil; IR (neat, cm^{-1}) 1718, 1458, 1438, 1099; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.75(\mathrm{~m}, 1 \mathrm{H}$), $5.05(\mathrm{~m}, 2 \mathrm{H}), 3.90$ ($\mathrm{m}, 1 \mathrm{H}$) $, 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.10-0.80$ (series of $\mathrm{m}, 12 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 210.5, $135.6,117.0,87.8,68.5,45.4,40.3$, 38.6, 37.4, 34.1, 30.3, 25.3; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 194.1307, obsd 194.1303.

Reaction of 5 with Allyllithium. Reaction of 5 (208 mg , 0.90 mmol) with allyllithium in the predescribed manner afforded $22.1 \mathrm{mg}(9 \%)$ of $10,41.8 \mathrm{mg}(17 \%)$ of $11,88.5 \mathrm{mg}(36 \%)$ of 12 , and 29.5 mg (12%) of 13 .

For 10: colorless oil; IR (neat, cm^{-1}) 1737 ; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.40(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.45(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45$ (m, 2 H), $1.28(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm 201.6, 134.9, 117.5, 87.3, 68.3, 57.0, 43.3, 35.1, 34.0, 33.9, 25.5, 24.4; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 272.0393, obsd 272.0402.

For 11: colorless oil; IR (neat, cm^{-1}) 1736; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~m}, 2 \mathrm{H})$, $3.42(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.08$ (m, 1 H$), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 2$ $\mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{ppm} 201.2,134.0,118.3,87.7,68.5,61.6,47.5,39.5$, 37.0, 31.2, $27.0,25.6 ; \mathrm{MS} \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$calcd 272.0393 , obsd 272.0394.

For 12: colorless oil; IR (neat, cm^{-1}) 1735 ; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.49(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H})$, 3.88 (m, 1 H$), 3.70(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.60$ $(\mathrm{m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1$ H), $0.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{ppm} 201.3,133.6$, $118.8,88.3,68.5,60.9,46.5,39.1,36.9,34.6,27.9,25.1 ;$ MS m / z (M^{+}) calcd 272.0393 , obsd 272.0410 .

For 13: colorless oil; IR (neat, cm^{-1}) 1738 ; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 5.35(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~d}, \mathcal{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 2 \mathrm{H})$,
3.53 (m, 2 H), 2.51 (ddd, $J=5.7,8.1,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1$ $\mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H})$, $1.20(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ppm $202.2,135.1,117.4,87.7,68.7,58.3,43.4,35.3,34.9,34.1,25.8$, 24.5; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 272.0393, obsd 272.0371.

Reaction of 5 with Allylmagnesium Bromide. Reaction of $5(208 \mathrm{mg}, 0.90 \mathrm{mmol})$ with allylmagnesium bromide in the predescribed manner except for workup with saturated NaHCO_{3} solution afforded 85 mg (35%) of $10,45 \mathrm{mg}(18 \%)$ of 11 , and 51 mg (21%) of 12.

Acknowledgment. We thank the National Science Foundation for financial support.

Supplementary Material Available: Copies of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4-13 (20 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: (1) Paquette, L. A.; Negri, J. T.; Rogers, R. D. J. Org. Chem. 1992, 57, 3947.
 (2) (a) Kowalski, C. J.; Weber, A. E.; Fields, K. W. J. Org. Chem. 1982, 47, 5088. (b) Kametani, T.; Suzuki, K.; Nemoto, H.; Fukumoto, K. J. Org. Chem. 1979, 44, 1036. (c) Chuit, C.; Sauvêtre, R.; Masure, D.; Normant, J. F. Tetrahedron 1979, 35, 2645.
 (3) Djerassi, C.; Scholz, C. R. J. Am. Chem. Soc. 1948, 70, 417.
 (4) (a) Stottier, P. L.; Hill, K. A. J. Org. Chem. 1973, 38, 2576. (b) Collington, E. W., Jones, G. J. J. Chem. Soc. (C) 1969, 2656 . (c) Joly, R.; Warnant, J.; Noniné, G.; Bertin, D. Bull. Soc. Chim. Fr. 1958, 366.
 (5) Dunn, G. L.; DiPasquo, V. J.; Hoover, J. R. E. J. Org. Chem. 1968, 33, 1454.

[^1]: (6) Seyferth, D.; Weiner, M. A. J. Org. Chem. 1961, 26, 4797.
 (7) (a) Bovey, F. A. Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York; 1969, pp 82-87. (b) Pople, J. A.; Schneider, W. G.; Bernstein, H. J. High Resolution Nuclear Magnetic Resonance, McGraw-Hill, New York; 1959, pp 400-415.
 (8) Seyferth, D.; Weiner, M. A. J. Org. Chem. 1959, 24, 1395.
 (9) Paquette, L. A.; Branan, B. M.; Friedrich, D.; Edmondson, S. D.; Rogers, R. D. J. Am. Chem. Soc. 1994, 116, 506 and relevant references cited therein.

[^2]: (10) Haight, A. R. Ph.D. Dissertation, The University of Wisconsin, Madison, Wisconsin, 1990.

[^3]: (11) Duddeck, H. Topics in Stereochemistry 1986, 16, 279.
 (12) Jantzen, R.; Tordeux, M.; deVillardi, G.; Chachaty, C. Org. Magn. Reson. 1976, 8, 183.
 (13) Workup in this instance was modified to involve quenching with a saturated NaHCO_{3} solution instead of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. As shown by independent experimenta-tion, these conditions are adequate to epimerize 13 to 12 during the course of several hours.
 (14) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26, 6015.
 (15) Smith, A. B., III; Dunlap, N. K.; Sulikowski, G. A. Tetrahedron Lett. 1988, 29, 439.

[^4]: (16) Reetz, M. Angew. Chem., Int. Ed. Engl. 1984, 23, 556.
 (17) (a) Schlosser, M.; Stähle, M. Angew. Chem., Int. Ed. Engl. 1980, 19, 487. (b) van Dongen, J. P. C. M.; van Dijkman, H. W. D.; de Bie, M. J. A. Rec. Trav. Chim. Pays-Bas 1974, 93, 29.
 (18) (a) Kahn, S. D.; Hehre, W. J. Am. Chem. Soc. 1986, 108, 7399. (b) Kahn, S. D.; Keck, G. E.; Hehre, W. J. Tetrahedron Lett. 1987, 28, 279 and later papers by this group.
 (19) Zefirov, N. A.; Baranenkov, I. V. Tetrahedron 1983, 39, 1769.
 (20) (a) Quédrango, A.; Phan Viet, M. T.; Saunders, J. K.; Lessard, J. Can. J. Chem. 1987, 65, 1761. (b) Lessard, J.; Saunders, J. K.; Phan Viet, M. T. Tetrahedron Lett. 1982, 23, 2059. (c) Phan Viet, M. T.; Lessard, J.; Saunders, J. K. Tetrahedron Lett. 1979, 317. (d) Lesard, J.; Phan Viet, M. T.; Martino, R.; Saunders, J. K. Can. J. Chem. 1977, 55, 1015
 (21) For general information, see Paquette, L. A.; Thompson, R. C. J. Org. Chem. 1993, 58, 4952.

